XX Межрегиональная олимпиада школьников по математике и криптографии

Задачи для 11 класса

Решение задачи 1

Сначала заметим, что после первого оборота количество дуг равно 2^2 , после второго -2^3 , после последнего -2^{n+1} . Пусть после оборота с номером k, $1 \le k \le n$ в точках деления окружности на дуги расположены числа $x_1, x_2, ..., x_{2^{k+1}}$. Тогда в ходе оборота с номером k+1 на окружности появятся следующие новые числа

$$y_1 = \frac{3x_1 + 3x_2}{2}, \ y_2 = \frac{3x_2 + 3x_3}{2}, \ K, \ y_{2^{k+1}} = \frac{3x_{2^{k+1}} + 3x_1}{2}.$$

Очевидно, что

$$\sum_{i=1}^{2^{k+1}} y_i = 3 \cdot \sum_{i=1}^{2^{k+1}} x_i.$$

Значит, после k+1 оборота сумма всех чисел на окружности возрастёт в 4 раза. Если учесть, что первоначальная сумма чисел на окружности равнялась 6, то получаем окончательный ответ.

Ответ: $6 \cdot 4^n$.

Решение задачи 2

Граф, используемый в задаче, обладает следующим свойством: из множества всех его вершин можно выделить такое подмножество V (отмеченное на рис. 5 кружочками), что любая вершина графа лежит в окрестности ровно одной вершины из V. Окрестностью вершины графа называют множество соседних с ней вершин, включая её саму. Очевидно, что искомое число равно сумме чисел, расположенных в вершинах из множества V: 112+104+96+144+136+128+120=840.

Ответ: 840.

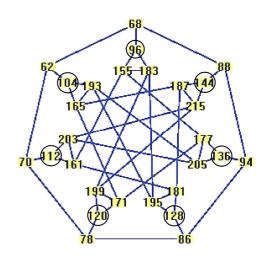


Рис. 5

Решение задачи 3

Составим, исходя из условия задачи, систему неравенств и запишем ее в виде двух подсистем:

$$\begin{cases} 0 < c, & \qquad & \qquad \\ a_4 < c, & \qquad & \qquad \\ a_3 \ge c, & \qquad & \qquad \\ a_3 + a_4 \ge c, & \qquad & \qquad \\ a_2 < c, & \qquad & \qquad \\ a_2 + a_4 < c, & \qquad & \qquad \\ a_2 + a_3 < c, & \qquad & \qquad \\ a_1 + a_2 + a_4 \le c, & \qquad \\ a_1 + a_2 + a_4 < c, & \qquad \\ a_1 + a_2 + a_3 \ge c, & \qquad \\ a_1 + a_2 + a_3 \ge c, & \qquad \\ a_1 + a_2 + a_3 \ge c, & \qquad \\ a_1 + a_2 + a_3 \ge c, & \qquad \\ a_1 + a_2 + a_3 + a_4 \ge c. \end{cases}$$

Из первой подсистемы получаем:

$$\begin{cases} a_3 \ge c \\ a_2 + a_3 + a_4 < c \end{cases} \Rightarrow a_2 + a_4 < 0.$$

Из второй подсистемы получаем:

$$\begin{cases} a_1 < c \\ a_1 + a_4 \ge c \end{cases} \Rightarrow a_4 > 0;$$

$$\begin{cases} a_1 < c \\ a_1 + a_2 + a_3 \ge c \end{cases} \Rightarrow a_2 + a_3 > 0.$$

Подбираем некоторые целые числа, удовлетворяющие полученным соотношениям, например $a_4=1$, $a_2=-2$, $a_3=3$. Подставляем их в первую подсистему, тогда $2 < c \le 3$. Полагаем c=3 и подставляем во вторую подсистему, получаем $2 \le a_1 < 3$, тогда выбираем $a_1=2$.

Решение задачи 4

По двум последним строкам можно восстановить обратную перестановку и использовать её для расшифрования первого сообщения. Из-за повторов букв в полученных строках сделать это однозначно удаётся не всегда. Таким образом, задача сводится к выбору букв из столбцов глубины не более трёх, которые дают читаемый текст. Жирным шрифтом выделены выбранные буквы, в серых клетках указаны уже использованные буквы, не участвующие в выборе.

N	К	Л	М	Н	0	N	К	Л	М	Н	0	N	К	Л	М	Н	0	С	Τ
N	К	0	0	К	М	Т	N	С	0	Н	N	Л	Н	Л	К	М	Л	М	Н
	Варианты обратной перестановки:																		
1	2	6	6	2	4	20	1	19	6	5	1	ო	ഥ	ო	2	4	ო	4	5
7	8	12	12	8	10	20	7	19	12	11	7	9	11	9	8	10	9	10	11
13	14	18	18	14	16	20	13	19	18	17	13	15	17	15	14	16	15	16	17
	Варианты открытого текста:																		
Н	К	М	М	К	А	Ы	H	N	М	К	Н	Б	ĸ	Б	К	A	Б	А	К
0	Р	А	Α	Р	Л	Б	0	N	А	Α	0	0	А	0	P	Л	0	Л	А
Ε	Н	E	Ε	Н	0	Б	Ε	N	Ε	N	E	Т	N	Т	Н	0	Т	0	N

Ответ: океан обнимает корабли

Решение задачи 5

Пусть y=14197777, $N=p\cdot q=56887111$, $p,\ q$ — простые числа. По условию $HO\mathcal{L}(x,N)=p>1$, то есть $x=t\cdot p$, где t — натуральное число. Так как $y=r_N(x^3)$, где $r_N(x^3)$ — остаток от деления на N числа x^3 , то $HO\mathcal{L}(y,N)=p$. Вычисляя $HO\mathcal{L}(14197777,56887111)$, находим, что p=10667, тогда $y=1331\cdot p$, а $q=\frac{N}{p}=5333$.

Делим обе части уравнения

$$1331 \cdot p = r_N((t \cdot p)^3)$$

на p, получаем:

$$1331 = r_q \left(t^3 \cdot p^2 \right) = r_{5333} \left(t^3 \cdot 10667^2 \right) = r_{5333} \left(t^3 \right).$$

Поэтому $t = \sqrt[3]{1331} = 11$ и $x = t \cdot p = 11 \cdot 10667 = 117337$.

Ответ: x = 117337.

Решение задачи 6

Сравним посимвольно последовательности цветов, приведённые в условии и сформируем таблицу:

С	К	3	К	К	К	К	3	3	К	К	С	С	ĸ	К	3	С	3	С	К	Светофильтры Чебурашки
К	К	ദ	ദ	Э	С	К	C	К	С	ജ	ജ	C	К	С	К	С	К	З	К	Светофильтры Шапокляк
					*				*	*			*			*		*		Срабатывание датчика
	ч	ч			ч	ч			ч	ч		ч	К			С		ч	ч	Комбинация Гены

На каждой позиции возможны четыре варианта: совпали или нет цвета светофильтров Чебурашки и Шапокляк, сработал или нет у Шапокляк датчик. Рассмотрим эти варианты:

- цвета не совпали, датчик не сработал. Тогда в этой позиции кодовой комбинации Гена выставит чёрный цвет или цвет, выбранный Чебурашкой (всего 2 варианта);
- цвета совпали, датчик сработал, тогда Γ ена выставит тот же цвет (1 вариант);
- цвета совпали, датчик не сработал или цвета не совпали, но датчик сработал. Тогда Гена выставит чёрный цвет (1 вариант).

Ответом будем число $4^{20}-2^k$, где k — число позиций, где (в которых) цвета не совпали и датчик не сработал. В данном случае k=9.

Ответ: $4^{20} - 2^9$.

Критерии определения победителей и призеров XX межрегиональной олимпиады школьников по математике и криптографии

Жюри XX Межрегиональной олимпиады школьников по математике и криптографии установило следующие критерии определения победителей и призеров среди учащихся 11 классов:

1 место - полностью решены не менее пяти задач;

2 место - полностью решены не менее четырех задач;

3 место - полностью решены не менее трех задач.